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ABSTRACT

A five-parameter gamma distribution (BGD) having two

shape parameters, two location parameters, and a co_relation

parameter is investigated. This general BGD is expressed as

a double series and as a single sezies of the modified Bessel

function. This general BGD reduces to the known special case

for equal shape parameters. Practical functions for computer

evaluations for the general BGD and for special cases are

presented. Applications of the general BGD are to be found

in reliability theory, signal noise, and meteorology. In

this paper, applications to wind gust modeling for the ascent

flight of the Space Shuttle are illustrated.

This report is from a draft manuscript prepared to meet the

requirements for a presentation at the American Statistical

Association (ASA) National Annual Meeting, August 16-19, 1982,

at Cincinnati, Ohio. The paper for the ASA meeting was ac-

cepted and will be presented. A version of this report will

be submitted to the ASA for consideration for publication.



1. INTRODUCTION

Gunst and Webster (1973) discussed the need for a

practical method of dealing with dependent chl-square vari-

ares. They stated that most of the known results discussing

the bivariate chi-square and related bivariate F-distributions

were too prohibitive for practical use in that they either

invclved mathematical functions such as Laguerre polynomials

and c_>nvoluted sums or that they were too restrictive in the

number of parameters. While Gunst and Webster were primarily

concerned with dependent chi-square variates, it is obvious

that the same is true for practical use of dependent gamma

variates. For example, earlier work by authors such as

Kibble (1941), Krishnamoorthy and Parthasarathy (1951), and

Downton (1970) were restricted to the bivariate gamma with

equal shape parameters. Jensen (1970) and Jensen and Howe

(1968) were able to consider the unequal shape distributions;

however, their results are computationally restrictive.

Recently, McAllister, Lee, and Holland (1981) have been able

to give efficient methods for computing probabilities from

Jensen's joint bivariate F-distribution; however, this method

is still difficult to use.

In this paper the results given by Gunst and Webster

have been investigated as a computational model for the

bivariate gamma distribution with unequal shape parameters.



J

E

Several functions, such as the conditional distributions and

probabilities in different geometric regions, are also con-

sidered. Each of these expressions were of interest in con-

sidering applications to wind gust modeling for the ascent

flight of the Space Shuttle.

Section 2 s_u_marizes the results for the five-parameter

bivariate density function and considers some special proper-

ties of the density function. Expressions are derived for

probabilities over different geometrically shaped regions.

Some properties of the conditional distribution functions are

also presented. Section 3 presents an application of the

bivariate gamma probability functions for wind gust modeling.

}

1
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2. SUMMARY OF FUNCTIONS

2.1 Bivariate Gamma Probability Density Function

2.1.1 A Five-Parameter Bivariate Gamma Density Function

In this section, the results given by Gunst and Webster

(1970) for the bivariate chi-square are extended to the

bivariate gamma distribution with unequal shape parameters

71 < 72 given by

f(tl,t2; Yl,Y2,n) =

t_ 2-I exp - {(tl+t2)/(l-n)}

Y 1

(l-n) r(_l ) r(y2-Yl )

_ 2k
X _ _ _j+k F(Y2-Yl+k) (tl't2)j t

k=0 j=0 (l-q) 2j+k F (72+J+k) j! k!

(2 .i)

Where t I = 81x , t 2 = B2y , 81 and 82 are known scale parameters

_ d q = P/72/71 where p is the correlation coefficient

between the variables x and y.

Due to the method of construction by Gunst and Webster,

the above bivariate gamma density function has five parameters;

namely, 81, B2, 71 , Y2' and q. However, the model is not

completely general in that the correlation between the

4
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variables x and y, denoted by p is restricted to

o ! o <_.. n
(2.2)

Thus, the model is very restrictive whenever 72 >> 71 and

is large. To the authors' knowledge, Moran (1969) has an

expression for the genera] five-parameter gamma distribution.

However, his expression for the density function is compu-

tationally unfeasible for most practical applications.

The above function (2.1) can be expressed as a single

series in terms of the modified Bessel function of the first

kind, Ig(z) as:

YI-I

t 1

f(tl,t2; YI,Y2,n) =

72-1
t 2 exp -{ (tl+t2)/(l-n) }

71
(l-n) r(7 l) r(y2-Yl )

® k

q F (y2-Yl+k) t2kX I

k=0 k! (q tl't2 )k/2 Y2+k-i
(2.3)

2.1.2 The Fou:-Parameter Bivariate Gamma Density Function

For equal shape parameters, Yl E Y2 = Y' q = p' and

2.1 becomes:
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f(tl,t2; Y,P) =

(tl't2)7-I exp -{(tl+t2)/(l-p)}

(l-p) Y r(y)

= 0j (tl't 2) JxX
j=0 (l-P) _ F(y+j) j!

(2.4)

This function can also be expressed in terms of the Bessel

function, as:

f(tl,t2; Y,P) =

(tl.t2) (y-1)/2 exp -{ (tl+t2)/(l- p)}

0(Y-1)/2 (l-p) r(y)

_2(Ptl'_ %}× I¥-i _ _Z-p 2), (2.5)

This is the form of the four-parameter bivariate gamma

density function as derived by Kibble (1941) and reported by

Downton (1970). Although no claim can be made that equation

2.1 is a completely generalized five-parameter bivariate gamma

density function, it is satisfying to see that 2.1 reduces

to the known special case.

Because the four-parameter bivarlate gamma density func-

tion (2.4) is symmetrical with respect to the line tI = t2,

a transformation of the coordinates can be made to take

advantage of this symmetry as was done by Adelfang and Smith

(1981).

@
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The expressions to give the finite number of terms suf-

ficiently large to ensure convergence to an assigned accuracy

of these infinite series expressions for computational evalu-

ations can be established.

2.2 Bivariate Probability Distribution Functions (PDF)

2.2.1 For the five-parameter density function (2.1) the PDF

is defined (see Figure i) as:

/0 0 f(t I, t2; Yl,Y2,q)dt2dt I

tZ

t 1

FIG. 1 PROIIAIIILITYIN A RECTANGLE

P'{', _','. ,2 _ '2o}
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After performing the indicated integration givess

F[t 1 < t_, t 2 < t_] = Pr{t 1 < tl, t 2 < t_}

OO OO

(l-n) Y

r(Yl) r'(y2-y 1) _

k=0 j=0

nJ+kr (y2-Yl+k)

j! k! r(Y2+J+k)

(2.6)

Where 7(a,x) is the incomplete gamma function which is

defined as:

7(a,x)

x

= /0 ta-I e-t dt

(2.7)

This expression can be expanded in several ways; namely,

(-i) n xa+n
7(a,x) = •

nI (a+n)
n=O

(2.8)

oO

xa+n
_(a x) = a -I F(l+a) e -x' r (l+a+n)

and

n=O

(2.9)

P(a,x) = 7(a,x)/r(a) • (2.10)

8
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The expression 2.9 is of particular usefulness in ob-

taining the required integration for sector probabilitles of

Section 2.3.

2.2.2 For the four-parameter function (2.4), the PDF is:

Pr{t 1 < t_, t 2 < t_} = (1-O)Y- - r(y)

CO

j=0

_(_+J, t_/(l-_))X(_+j, t_/(l-0))
r (7+j) (2.11)

?

i'

r

Computer programs were developed to evaluate the PDF's

using the series expressions and by double numerical inte-

gration of the density functions expressed in terms of the

Bessel function. Although both methods gave high precision

results, the evaluations of the PDF expressed as series were

far more efficient in computational time.

2.3 Sector Probabilities

Two expressions are given to determine the probability

contained in a sector for both the five-parameter function

(2.1) and the four-parameter function (2.4).

9
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2.3.1(a) For the five-parametor function, the prob4d_llty

contained in a sector (s_e Figure 2, Condition ,) is define_

as :

tl'® t2=at 1

f(tl,t2; >l,72,n)dt2dtl

0

(2.12)

lil

0 II
0

P16. | PROBABILITY IN i lICTOR

., ,,I,,.-,, "-,,) ,. "I,, ..',. ',"")

I0
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The series expression for the integration of Equation 2.12

is:

P(a,=) "

72 Y2
= (l-n)

(l+a) YI+Y2
F (y 1)r (y2-Y1)

Oo OO Oo

×X Z
k=0 j=0 n=O

nJ +k F(v2-Vl+k ) r(Vl+V2+2j+k+n) aJ +k+n

2j+k+n
r(l+Y2+J+k+n) (l+u)

,(2.13)

where s > O. = tan -I (t}/t_) or s = tanO.

For the independent case _ = 0 in 2.12, the sector

probability for 2.13 becomes:

Y2 _ r(yl+Y2+n)
n

P(s,=) = Yl+Y 2 r(l+Y2+n ) (l+e)n
(I+_) r (yl) n=O

(2.14)

1i
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A special case of interest foz computer program checkout is

to set y I = I in 2.14 and obtain

Y2

: . (2.15)

In addition, by letting _ : tan8 in 2.14 gives

-Y 2
P(e,®) = [i + cot0] (2.16)

Further, for yl = 2, 3, 4

obtained in closed form.

eee, the series in 2.14 can also be

2.3.1(b) For large _ expression 2.12 converges slowly. By

changing the order of integration of 2.1.2, the probability

contained in a sector

by :

(condition b in Figure 2) is defined

tl=_'t 2

P(a',_) = / / _(tl't2;Yl'Y2'n)dtldt2 '

0 0

(2.17)

and the sector probability is obtained as

P(s' ,_-) =

Y1 Y2
_' (l-n)

"(1+72
(I+_ ') r (y1) F (y2-Y1)

_ 09

k=O j:O n=O

J+k F
n (y2_y l+k) r (yl+j) I.(yl+Y2+2j+k+n) _ j+n

jl k! r(y2+J+k)r(l+_l+J+n ) (l+a,)2J +k+'n

, (2.18)

12
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where _' " tan-I _2

or _' - tan8' and e' = (90 - B) .

For the independent case, _ = 0, equation 2.18 becomes

Y1 _ F (yl+Y2+n) ,nP(_' ,_) = _'
yl+Y2 r (l+y]+n), _i+_',)n

(l+(x') ['(y2) n=O

(2.19)

Note for the special cases, n = 0; comparing 2.19 with 2.13

it is seen that the subscripts to the shape parameters are

interchanged and that _ is replaced by _'.

2.3.2 Sector Probability for the Four-Parameter Function

2.3.2(a) For equal shape parameters, Yl £ Y2 = Y (see

Figure 2, condition a), the probability in a sector is:

(i0) 0Jr(2  2j+n)oj+n
= _'T F (l+y+j+n) (l+s) 2j+n

P(_, ) (l+_)_- r-T_- j=o n--O

• (2.20)

13
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and for p - 0 _uation 2.20 becomes:

=Y r (27+n) o;n
Plot,®) = (I-_12'_ rll+_,+n) (l+=) n

n-O

(2.21)

2.3.2(b) For equal shape parameters, Y1 =- Y2 - Y' the sector

probability for condition b shown in Figure 2 is:

P(=''=) = (l+s') 27 F(Y)

j=0 n=0

pJ F(2_+2j+n) ct 'j+n

j! F(l+y+j+n) (l+u')2j+n

(2.22)

2.4 Probability in Triangles

This section prebents expressions to obtain the proba-

bility contained in a right triangle for two oonditlons, !

and b, and for an equilateral right triangle.

14

--.d
---- ,u±__
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2.4.1 The Probability in a Right Trlangle for the Five-

Parameter Function

2.4.1.1(a) The probability contained in a right triangle

shown as conditicn a in Figure 3 is obtained by taking the

definite integral for the second integration of Equation 2.12.

I 11

FIG. 3 PIIIIAIILITY lii A fllIHT TIIIAItILi

15



This results in

PRT =

7 2 72
(l-n)

71+72
(i+_) F (71) F (72-71)

OO 00

k=0 j=0 n=0 j!k'

F (72-71+k)

F (l+72+J+k+n)

uj+k+n

(l+a) _

X _(yl+72+2j+k+n, (l+s_
(2.23)

For n = 0 Equation 2.23 becomes:

72

PRT = 71 +72

(i+_) F (71) n=0

n

(l+s) n

7(71+72+n, (l+s) t_)

F [rV72+n)
• (2.24)

2.4.1.i(b) The probability contained in a right triangle

shown as condition b in Figure 3 is obtained by taking the

definite integral for the second integratlo, of Equation 2.17.

The result is:

16
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(I+_')
YI+Y2

_2
(l-n)

r(_l) r(Y2-_l)

j+k
q

k=O j=O n=O j! k!

r (72-Yl+k) r (71+J) a 'j+k+n

r (y2+J+k) r (l+71+J+n) {I+_) 2j+k+n

/i+_

For q = 0 Equation 2.25 becomes:

(2.25)

r

_i ®

PRT = 71+Y 2
(],+a ') n=O

y(yl+_,2+n, (l+a') t_)

r (l+Yl+n)

in

×
(l+s') n

(2.26)

2.4.1.2 The Probability in a Right Triangle for the Four-

Parameter Function

2.4.1.2(a) The probability contained in a right triangle

for the equal shape parameter bivariate gamma function for

condition a shown in Figure 3 is:

For _I _ Y2 = 7 Equation 2.23 reduces to:

17
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I" (l+y+j-_) (1+_) 2j+n
j-O n,,0

X 7(27+2j+n, /1+_
(2.27)

and for p = 0 Equation 2.27 becomes:

n

_y _, 7(2"{+n, (l+s) t[)s

= _ F(l+y) (i+_) nPRT (l+e)2YF(y) n=0

(2.28)

4.4.1.2(b) For condition b shown in Figure

in a right triangle is:

3, the pzobability

For ¥ 1 -: 7 2 = 7

s '7 (l-p) @J

PRT = .... 2j j 1 F (l+7+j+n)
(I+_') r(7) j=0 nffiO

,j+n

× _6
(i+_') 2j

7(27+2j+n (I+<,' \, (2.29)

18
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and for 0 - 0 Equation 2.29 becomes

_,y _ _(2y+n, (!+_') t_)

" I_ r (l+7+n)
PRT (i+_') 2Yr(7) n-0

x (2.30)

2.4.2 For Equilateral Right Triangle

2.4.2.1 For the Five-Parameter Function

The probability contained in an equilateral right tri-

angle shown in Figure 4 for the five-parameter function is

obtained from (2.31).

II k ° tI • tl

FIG. 4. PROBABILITY IN AN EQUILATERAL RIGHT TRIANGLE

19
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iz'b't /2- (b-t 1)PERT = f(tl't2; ¥1'Y2'n) dt2dtl

0 0

(2.31)

The indicated integrations of 2.31 yield:

PERT =

Yl+Y 2
t_ exp -{t_/(l-n) }

Y1
(l-n) F(72-71 ) F(yl )

_ = j+k

k=0 j=0 n=0

F(y2-Yl+k) F(yl+j) F(l+72+_+k+n) t_ 2j+k+n

(l-n) 2j+k+n j ! kl F (l+71+72+2j+k+n)

• (2.32)

For n = 0 Equation 2.32 reduces to:

oo

PERT = t_ 71+72 e-t_ _.

n=O

[ (l+Y2+n) t_ n

r (l+y i+72+n)

(2.33)

2.4.2.2 For the Four-Parameter Function

For equal shape parameters, Equation 2.32 reduces to:

2O
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PERT =

t[ 27 exp -{t[/(1-p)}

(l-p) Y r (y)

oo

×$7
j=0 n=0

pJ r(7 + j) F(I+y+ j+n) t_ 2j+n

(1-p)2j+n j! l"(l+2y+2j+n)

(2.34)

and for P = O, Equation 2.34 becomes:

o0

PERT = t_ 2 exp-{t[}

n=0

F (l+y+n) t[n

F (i+27+n)
(2.35)

2.5 Properties of the Conditional Distribution

2.5.1 Conditional Probabilities

Because the five-parameter camma function 2.1 is not a

symmetrical function, there are two expressions for the con-

ditional distribution. They are for (t I I t 2) and (t2 I t I)

given by 2.36 and 2.38.

21
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r(Y 2)
|nt_l > J

e"P-_1=-_
r(_2-_ z) [j_c/nt_

A

7(_i+j, tl/(l-n)

j|

X _ \_ F(y2+J+k) k! "
k=0

(2.35)

By taking the limit of the given value in 2.36 as t2 + 0

produces:

A

Pr{t I < tI

7(y 1, tl/(l-n))

t2 _ 0} : r(va)
(2.37)

A

Pr(t 2 < t2 1 tI = t_; yi,72, D}

(l-q) exp -|1_6 j nt_ J

r (Y2-Y 1 )

1

7.'

_< k I__ n F (y2-Yl+k) ^

k=0 k! F(y2+J+k) Y(¥2 +j+k' t2/(l-q))
(2.38)
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and upon taking the limit as t I ÷ 0 in 2.38 gives

A

Pr{t 2 < t 2 I t 1 + 0} =

Y2-1
(l-n)

r (y2-Y1)

oO

. F (y 2+k)
k=0

A

Y(72+k, t2/(1-q)) .
(2.39)

For the equal shape parameter bivariate gamma function,

the conditional PDF is

^
Pr{t 2 <_ t 2 I t 1 : t_; Y,P} = exp -_1-_|

co

X S Okk
(l-o)

K=O

k--[. 7(y+k, t2/(I-0) )
(2.40)

and for the limit as t_ + 0

Pr{t 2 <_ t 2 I tI + O; Y,o) =

t2 Y-I

(i-0) > r (¥)

X exp -{t2/(l-_)) •
(2.41)

Because this is a symmetrical function, the conditional

distribution for {t I I t 2} can be obtained by interchanging

the subscripts in Equations 2.40 and 2.41.
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Equations 2.37, 2.39, and 2.41 are interesting reiults.

This is because the original bivariate gamma functions (2.1

and 2.4) are bounded at the origin and yet the conditional

functions are not bounded at the origin as the limit of the

given values approaches zero. This property of the condi-

tional functions must be reasoned with when they are used as

models for physical data.

2.5.2 Moments of the Conditional Function

For the four-parameter (equal shape parameter) bivariate

gamma density, f(t I, t2; 7, p), the conditional moments are

sufficiently simple to be derived. For this case, the non-

central conditional moments are expressed as

I'(_+j)(l-p) j - (0t_)/(l-p)
_Ji (t2 : tl = t_) = e

r(y)

X IFI(y+j;y; (Ot_)/(l-p)) , (2.42)

whe_e IFl(a ; c ; z) is the confluent hypergeometric function

of Kummer's function as defined by W. Magnus et al (1966).

Fr()m 2.42 the condition._l mean and variance are given

by

E(t- 2
(2.43)
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Var (t 2 I t 1 = t_) = (l-p) 2 [y + 2pt_/(1-p)] (2.44)

Note that the conditional moments exist when the given value

t_ approaches zero in Equations 2.43 and 2.44. Also, it is

observed from 2.43 and 2.44 that the regression of t2on tlis

not homogeneous over t_

2.6 Illustrations and Properties of the Bivariate Gamma

Distribution

This section presents graphical displays of the bivariate

gamma density function tO illustrate some of the properties

of this function.

Figures 5a, 5b, 6a, 6b, 7a, and 7b are schematic illus-

trations of the contours of equal probability density to

show the variations with the shape parameter, _, and the

correlation coefficient, p, for the four-parameter function,

f(t I, t2; Y, p), Equation 2.4. In all Figures 5a-Yb, the

density contours are symmetrical with respect to the line

tI = t 2 .

For y < i, Figures 5a and 5b, the density is a maximum

for small values of tI and t2 and becomes undefined at

t I = t2 = 0.

For _ = I, Figures 6a and 6b, which is the bivariate

exponential density function, the maximu., density is at
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t I = t 2 = 0. For y = I, P = 0 (Figure 6a), the contours

for equal probability density form straight lines normal to

the line t I = t 2.

For 7 > 1 (Figures 7a and 7b), the mode exists and

lies on the line t I = t 2. (Additional characteristics of

the mode and the density of the mode are shown in Figures i0

and 11.)

Because the equal shape parameter bivariate gamma density

function 2.1 is symmetrical with respect to the line t I = t 2,

there is some analytical advantage in expressing this func-

tion in a coordinate system rotated by 45 degrees. In terms

of the Bessel fu.:tion, Equation 2.5 in the rotated coordinate

system is

y-i

2_ 2-2-
(zI z2 )

f(z I, z2; 7, P) = (l-p) (2p) (y-l)/2 F(y)

2 z22 %/_ (zI - )

X exp- {/2 Zl/(l-P)} I7_ 1 -- (l-p)

where z I = -_- (8 x x + 8y y) ,

/2
z2 = _- (By Y - 8x x)

(2.45)

and z I _ 0, z 2 _ 0, z I > z2; 7 > 0 and 0 < p < i.

This Bessel function is available as a computer subrou-

tine to aid in evaluating 2.45.
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Computer graphics for the evaluation of 2.45 for con-

tours of equal probability density are shown in Figures 8a_

8b, and 8c for 7 = 2 with p =0.25, 0.50, and 0.75; and in

Figures 9a, 9b, and 9c for y = 3 with p = 0.25, 0.50, and

0.75. The density contours were obtained by the following

steps:

i . Iterative evaluations of 2.45 with

obtain the model value, Zl"

z2= 0 to

. Dividing the Zl into ii increments, Az I, and

evaluation of 2.45 with z2 = 0 and Az I to obtain

the ii density values to be contoured.

• The contouring for the ii density values was by

iterative evaluations of 2.45 for the valid range

of zI and z 2 for each contour•

Interesting special cases of 2.45 can be expressed. One

is for y = 1.5. For y = 1.5, the Bessel function reduces to

a hyperbolic function and the PDF becomes:

f(zl,z2; y = 1.5, p) =

.4"_ z I.

X exp- I--_I
sinh

2

n [_ (l-_)] _

2 22)% 1/T6 (z I -z(l-o)
(2.46)
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from which the mode, Zl' is

(1-p._____) tanh-i {/_}
Zl =

and the modal density, D, is obtained in closed form as:

(2.47)

2exp-{_ Zl} sinh {_ Zll
5 = _/p (l-p)

(2.48)

The values of z 2 as a function of z I, for p fixed and density,

D = constant, is expressed as:

z2 = Zl 2p sinh /p (l-p)

2

By using the identity for the inverse hyperbolic sine

function, 2.49 becomes

z2 = 2p In _ + + 1
(2.50)

where _ = _ /_(l-p) • D • exp z I
(2.51)

Then z 2 = _ z/_22
(2.52)

/
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Equation 2.49 or 2.50 can be used as a special case to com-

pute contours of equal probability density.

Another special case is to let 0 - 0 and for 7 > 1 in

2.45 to get

f(zl,z2; y > i, _ = 0) =

y-1

(z12 - z2) exp -{/_" z 1}

2Y-1 [r(_)]2

(2.53)

and

f(zl,z 2 = 0, y > i,
p = O) =

2 (y-l)
zI exp - {/2 zI}

2_-l [r(_)]2
(2.54)

from which the mode is

(2.55)

and density at the mode is

= (7-i) 2 (y-l)
2 exp - {2(7-I)}

[r(y)]

(2.56)

Then z2 as a function of z I

r

2 2 |27-1 2
z2 = zI - [ [T'(y)] " D "

and fixed density,

1

exp {/2 Zl}l>---:T

D, is

(2.57)
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The location of the mode and the density value at the mode

are informative properties of skewed and usually bounded

probability distributions.

For the four-parameter gamma probability function (2.45),

the location of the mode, Zl' versus 7 for correlations, p, is

shown in Figure i0. Here it is observed that the mode, Zl'

increases with increasing 7 and decreases for increasing P.

The value of the density at the mode (Figure 11) decreases

with increasing ¥ and increases with increasing p.

Three-dimensional computer graphics are shown in

Appendix A for equal and unequal shape parameter gamma densi-

ties as the correlation varies. Also illustrated are contours

for equal probability densities. Although the abscissa and

ordinate scales are unequal, it can be seen that more density

is above the line, tl=t2, than below this line for 72 > 71.

Within Section 2 there are elements on the properties _

of the bivariate gamma probability distribution which are

believed to be original contributions to the better under-

standing of this function. Just as it is important to under-

" stand the characteristics of a data sample to make statistical

inft_rences and to model the sample by a probability function,

it is also important to understand the properties of the

probability function in the selection of other alternatives
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3. APPLICATION

Aerospace launch vehicles experience structural loads

that are imposed by wind variability along the vehicle tra-

jectory. The largest loads are often associated with a

discrete gust that stands out above the general disturbance

level (Jones, 1971). To ensure a margin of safety, informa-

tion about the amplitude and length scale of discrete gusts

and how they vary with altitude and season is required. A

previous discrete gust model used in aerospace engineering

applications proposes a gust with a quasi-square wave shape,

a variable length scale, and constant amplitude (Daniels,

1973). Other studies (Adelfang, 1970; Fichtl and Perlmutter,

1976) based on analysis of detailed Jimsphere wind profiles

between the surface and 16 km have concluded that gust ampli-

tude increases with altitude above 9 km. A new model described

herein treats gust amplitude and length scale as the variables

of a bivariate gamma distribution. Parameters of the model at

various altitudes are estimated from samples of gust data de-

rived from wind profiles.

3.1 Data

Detailed wind profiles at Cape Canaveral, Florida, mea-

surt,d from the earth's surface to 18 km at 25-meter altitude

intervals with the Jimsphere FPS-16 measurement system (Camp,

1971) were used. The sample consists of 150 profiles per
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month for the months of February, April, and July. Data

suitable for analysis were derived from these profiles by

application of three band-pass Martin-Graham digital filters

(DeMandel and Krivo, 1971). The filtered profiles defined

here as residual profiles contain wavelengths within the

90-420, 420-2470, and 2470-6000 meter bands. A set of zonal

wind component, u', residual profiles calculated from a

Jimsphere profile at Cape Canaveral (2/23/71, 1445 GMT) is

illustrated in Figure 12.

The definition of gust used in this study satisfies the

objective to provide data suitable for detailed analysis of

singularities or discrete perturbations that are often ob-

served in Jimsphere wind profiles. According to the conven-

tional approach, all the amplitudes in the filtered profile

would be defined as gusts. In this study, only the largest

residual with equivalent sign to the residual at reference

height, H0, is defined as a gust; as illustrated in Figure 13,

the gust, u', occurs between successive zero crossings at H I

and H2; Lu, is defined as the gust length.

3.2 Results

3.2.1 Marginal and Conditional Distributions

Examples of expected (gamma) and observed PDF's for absolute

gust component amplitude, lu'I, and associated gust length,
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u' MAX = GUST

Figure 13.
Schematic Definition of Gust
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Lu,, are illustrated in Figures 14 and 15; the gamma PDF's,

illustrated with solid lines, were calculated from sample

estimates of the parameters 7 and 8 listed in the figure

insets. The relatively small gust amplitudes An the 90-420

meter wavelength band and the good agreement between gamma

and observed PDF's are clearly indicated.

A further indication of goodness of fit was obtained

from calculations of the X2 statistic from expected and ob-

served populations. Although the outcome can be affected by

the arbitrary choice of the size and number of class intervals,

the results to date have supported the conclusion that the

marginal distributions are gamma distributed. A partial

summary of the results is illustrated in Table i. Results

for other months and other wavelength bands have yielded a

similar conclusion.

The variation of gust component amplitude with altitude

and season is an important consideration in aerospace design

and operations. Illustrations of how the univariate gamma

distribution is used to describe this variability are given

in Figures 16 and 17. During February at Cape Canaveral,

u component gust amplitude increases with altitude between

4 and 12 km; the variation is relatively small between 4 and

8 km and large between I0 and 12 km (Figure 16). As indi-

cated in Figure 17, gust amplitude is much smaller in sum_mer

(July) and early fall (October) than in Winter (February}.
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Lu,, are illustrated in Figures 14 and 15; the gamma PDF's,

illustrated with solid lines, were calculated from sample

estimates of the parameters 7 and B listed in the figure

insets. The relatively small gust amplitudes in the 90-420

meter wavelength band and the good agreement between gamma

and observed PDF's are clearly indicated.

A further indication of goodness of fit was obtained

from calculations of the X 2 statistic from expected and ob-

served populations. Although the outcome can be affected by

the arbitrary choice of the size and number of class intervals,

the results to date have supported the conclusion that the

marginal distributions are gamma distributed. A partial

summary of the results is illustrated in Table I. Results

for other months and other wavelength bands have yielded a

similar conclusion.

The variation of gust component amplitude with altitude

and season is an important consideration in aerospace design

and operations. Illustrations of how the univariate gamma

distribution is used to describe this variability are given

in Figures 16 and 17. During February at Cape Canaveral,

u component gust amplitude increases with altitude between

4 and 12 km; the variation is relatively small between 4 and

8 km and large between 10 and 12 km (Figure 16). As indi-

cated in Figure 17, gust amplitude is much smaller in summer

(July) and early fall (October) than in Winter (February).
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Table I.
Results of Testing the Hypothesis that the Samples z

of u and v Component Absolute Gust and Gust Length

are Drawn from Gamma Distributed Populations

Wavelength

Band

(m)

90-420

420-2470

2470-60003

All Filters

A/R 2

All

Iu' X iv' I Lu, Lv , Variables

412 610 511 511 2014

511 610 610 610 23/1

411 510 411 411 17/3

13/4 17/0 15/2 15/2 40/8

*Samples for month of February at six altitudes (4, 6, ...,
14 km) for Cape Canaveral, Florida.

ZRatio of cases accepted to cases rejected utilizing the X 2

test at the .05 level of significance.
3

Five altitudes (6, 8, ..., 14 km)

Aerospace vehicle control systems can respond critically

to large wind perturbations at certain wavelengths. The con-

ditional PDF of gust component amplitude, lu'l, given a gust

length, Lu, , for various altitudes and months is useful in

vehicle design. Conditional PDF's calculated from Equation

2.36 using sample estimates of the parameters from Cape Canaveral

band pass (420-2470) gust data at 12 km are illustrated in

Figure 18. Percentiles of the conditional PDF plotted as a

function of the given gust length are illustrated in Figure 19.

It is indicated that each percentile can be approximated by an

empirical linear function of L for thisu' example.
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3.2.2 Bivariate Distributions

An observed bivariate distribution nf gust variables i6

illustrated in Figure 20. The nondimensional variables T 1

and T 2 are calculated from u component absolute gust, fuel,

and associated gust length, Lug, data at 12 km over Cape

Canaveral for a wavelength range of 420-2470 meters. The

probability contained within rectangular domains was calculated

according to Equation 2.6. Rectangular domains are well suited

for preliminary evaluation of the goodness of fit of the model

to the observed distribution. A comparison is given in

Table 2 of the observed number of occurrences (counted within

2x2 cells in Figure 20) and the expected number if T 1 and T 2

are bivariate gamma distributed. There is good agleement

between observed and expected cell counts.

The domain of bivariate gamma distributed variables can

be divided into a number of equal-area sectors. The probability

contained within each sector is obtained by calculating the

difference in probability between two partially overlapping

sector probabilities. For sectors of equal area, the vari-

ation of probability from sector to sector is a measure of the

relationship between the shape parameters of the marginal

distributions. Equivalence of shape parameters yields a sym-

metry in the variation of the sector probabilities_ whereas,

nonequivalence yields asymmetry. The change in symmetry is
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clearly indicated in Table 3. A case illustrating asymmetry

in an observed distribution is illustrated in Figure 20; the

significant difference in the sample estimates of the 7 param-

eters (listed in the figure inset) is consistent with the

asymmetry of the plotted data. Nearly 90 percent of the data

are within the lower half of the domain illustrated in

Figure 20.

Table 3. Sector Probabilities for Equal Area Sectors

(Calculated from Equation 2.14), 71 = 2

Sector Range

Deg.

0-15

15-30

30-45

45-60

60-75

75-90

_2

2 3 4 5

.11510 .03177 .00829 .00208

.18875 .11054 .05518 .02531

.19615 .17020 .12403 .08198

.19615 .22211 .21056 .18047

.18875 .26696 .31588 .33770

.11510 .19843 .28606 .37245
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4. CONCLUDING REMARKS

Although the main topics stated in the abatract and

introduction have been investigated, the2e remains a need

for further investigations to address such topics as param-

eter estimation and hypothesis testing for data samples taken

from correlated bivariate gamma distributed variables.

Three commonly used procedures for estimating the

parameters for the univariate gamma distribution are:

I. The moment method,

2. A maximum likelihood method by Thom (1966), and

e A polynomial approximation given by Greenwood and

Durand (1960).

Bury (1975) gives a detailed discussion on parameter estima-

tion in the gamma distribution.

Very little can be found in the open literature concern-

ing hypothesis testing for the parameters of the gamma distri-

bution. In most cases, the results given in the literature

assume that the shape parameters are known and tested for the

scale parameter. In this report, a test for equality of

shape parameters in the presence of correlation was needed.

However, this problem has not been satisfactorily resolved
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%nd remains unresolved to the best of our knowledge.

is, there is not a test for

That

!
H 0 : 7x = 7y

whenever (x,y) _ F(yx,Bx,Yy,By, p) and p _ 0. Moran (1969)

has given an expression for the joint likelihood function and

has indicated a procedure for testing H 0 : 7 x = yy .

Further discussions on the properties of the functions

presented in Section 2 and additional examples in Section 3

may be helpful to those investigators who are interested in

making applications of these distribution functions.

4

t
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APPENDIX

GRAPHIC ILLUSTRATIONS

Thisappendix presents three-dimensional computer

graphics of bivariate g=_ma density (Figures AI-AI7) and con-

tours of equal probability density (Figures A18-A34) for

equal shape parameters (2.4) and unequal shape parameters

(2.1) as the correlation varies.

Bivariate Gamma Density
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